Abstract

In short-term probe-recognition tasks, observers make speeded old-new recognition judgments for items that are members of short lists. However, long-term memory (LTM) for items from previous lists influences current-list performance. The current experiment pursued the nature of these long-term influences-in particular, whether they emerged from item-familiarity or item-response-learning mechanisms. Subjects engaged in varied-mapping (VM) and consistent-mapping (CM) short-term probe-recognition tasks (e.g., Schneider & Shiffrin, Psychological Review, 84, 1-66, 1977). The key manipulation was to vary the frequency with which individual items were presented across trials. We observed a striking dissociation: Whereas increased presentation frequency led to benefits in performance for both old and new test probes in CM search, it resulted in interference effects for both old and new test probes in VM search. Formal modeling suggested that a form of item-response learning took place in both conditions: Each presentation of a test probe led to the storage of that test probe-along with its associated "old" or "new" response-as an exemplar in LTM. These item-response pairs were retrieved along with current-list items in driving observers' old-- recognition judgments. We conclude that item-response learning is a core component of the LTM mechanisms that influence CM and VM memory search.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call