Abstract

The continual growth of high speed networks is a challenge for real-time network analysis systems. The real time traffic classification is an issue for corporations and ISPs (Internet Service Providers). This work presents the design and implementation of a real time flow-based network traffic classification system. The classifier monitor acts as a pipeline consisting of three modules: packet capture and pre-processing, flow reassembly, and classification with Machine Learning (ML). The modules are built as concurrent processes with well defined data interfaces between them so that any module can be improved and updated independently. In this pipeline, the flow reassembly function becomes the bottleneck of the performance. In this implementation, was used a efficient method of reassembly which results in a average delivery delay of 0.49 seconds, approximately. For the classification module, the performances of the K-Nearest Neighbor (KNN), C4.5 Decision Tree, Naive Bayes (NB), Flexible Naive Bayes (FNB) and AdaBoost Ensemble Learning Algorithm are compared in order to validate our approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.