Abstract
While the preferential movement of water inside carbon nanotube is appealing for water purification, our understanding of the water transport mechanism through carbon nanotube (CNT)-based membrane is far from adequate. Here we conducted molecular dynamics simulations to study how the alignment of the CNTs in the membrane affects the water transport through the CNT membrane. It was shown that compared to the conventional CNT membrane where the alignment of CNTs was vertical to membrane surface, the “italicized CNT membrane” in which the contact angel between membrane surface and the CNT alignment is not 90° offered a higher transmembrane flux of water. The expanded exposure of more carbon atoms to water molecules reduced the energy barrier near the entrance of this italicized CNT membrane, compared to the vertical one. For water flows through the italicized CNT membrane, the Lennard-Jones interaction between water and nanotube as function of central path of the CNT changes from “U” to “V” pattern, which significantly lowers energy barrier for filling water into the CNT, favoring the water transport inside carbon nanotube. Above simulation indicates new opportunities for applying CNT in water purification or related fields in which water transport matters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.