Abstract

Abstract Biotechnologically produced itaconic acid is an important building block for the chemical industry and still based on pure carbon sources, detoxified molasses or starch hydrolysates. Changing these first generation feedstocks to alternative renewable resources of a second generation implies new challenges for the cultivation process of the industrial itaconic acid producer Aspergillus terreus, which is known to be very sensitive towards impurities. To select a suitable pretreatment method of a second generation feedstock, the influences of different hydrolysate components, like monosaccharides and sugar degradation products, were tested. Particular the impact of those components on itaconic acid yield, productivity, titer and morphology was investigated in detail. Wheat chaff was used as lignocellulosic biomass, which is an agricultural residue. An alkaline pretreatment method with sodium hydroxide at room temperature and a subsequent enzymatic saccharification at pH 4.8 at 50 °C with 10 FPU/gBiomass Biogazyme 2x proved to be very suitable for a subsequent biotechnological production of itaconic acid. A purification by a cation exchanger of the wheat chaff hydrolysate resulted in a final titer of 27.7 g/L itaconic acid with a yield of 0.41 g/gtotal sugar.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call