Abstract

Itaconic acid (IA) is recognized for its potential application in treating intestinal diseases owing to the anti-inflammatory and antioxidant properties. Perfluorooctanoic acid (PFOA) can accumulate in animals and result in oxidative and inflammatory damages to multi-tissue and organ, particularly in the intestinal tract. This study aimed to explore whether IA could mitigate intestinal damage induced by PFOA exposure in laying hens and elucidate its potential underlying mechanisms. The results showed that IA improved the antioxidant capacity of laying hens and alleviated the oxidative damage induced by PFOA, as evidenced by the elevated activities of T-SOD, GSH-Px, and CAT, and the decreased MDA content in both the jejunum and serum. Furthermore, IA improved the intestinal morphological and structural integrity, notably attenuating PFOA-induced villus shedding, length reduction, and microvillus thinning. IA also upregulated the mRNA expression of ZO-1, Occludin, Claudin-1, and Mucin-2 in the jejunum, thereby restoring intestinal barrier function. Compared with the PF group, IA supplementation downregulated the gene expression of Keap1 and upregulated the HO-1, NQO1, SOD1, and GPX1 expression in the jejunum. Meanwhile, the PF + IA group exhibited lower expressions of inflammation-related genes (NF-κB, IL-1β, IFN-γ, TNF-α, and IL-6) compared to the PF group. Moreover, IA reversed the PFOA-induced imbalance in gut microbiota by reducing the harmful bacteria such as Escherichia-Shigella, Clostridium innocuum, and Ruminococcus torques, while increasing the abundance of beneficial bacteria like Lactobacillus. Correlation analysis further revealed a significant association between gut microbes, inflammatory factors, and the Keap1/Nrf2/HO-1 pathway expression. In conclusion, dietary IA supplementation could alleviate the oxidative and inflammatory damage caused by PFOA exposure in the intestinal tract by reshaping the intestinal microbiota, modulating the Keap1/Nrf2/HO-1 pathway and reducing oxidative stress and inflammatory response, thereby promoting intestinal homeostasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.