Abstract

The complementary operation of cascade hydropower (CHP) and photovoltaic (PV) can increase the integration of PV power and has become a trend in modern power systems. However, the randomness and variability of PV power output might cause challenges in precisely tracking the submitted generation plan of the CHP-PV complementary system. The safety and stability of the receiving-end power grid might deteriorate. In this paper, a multi-time scale dispatch framework with day-ahead and intra-day dispatch is established for the CHP-PV complementary system to address the PV uncertainties. The day-ahead dispatch is employed to provide reliable reference results and sufficient adjustment reservations for the intra-day dispatch. An Itô-theory-based stochastic optimization (ITB-SO) approach is proposed for the intra-day dispatch by modeling the PV prediction error with stochastic differential equations (SDE). The SDE model can be embedded into the ITB-SO approach without scenario generation, and thus computational burden can be significantly reduced compared with scenario-based methods. A complementary system in southwest China is chosen as a detailed case study. The simulation results demonstrate that real-time random PV fluctuations could be compensated by adjusting CHPs. Meanwhile, the target water level of cascade reservoirs can be tracked under the proposed approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call