Abstract

For most herbivorous animals, group-living appears to incur a high cost by intensifying feeding competition. These costs raise the question of how gregariousness (i.e., the tendency to aggregate) could have evolved to such an extent in taxa such as anthropoid primates and ungulates. When attempting to test the potential benefits and costs, previous foraging models demonstrated that group-living might be beneficial by lowering variance in intake, but that it reduces overall foraging success. However, these models did not fully account for the fact that gregariousness has multiple experiences and can vary in relation to ecological variables and foraging competition. Here, we present an agent-based model for testing how ecological variables impact the costs and benefits of gregariousness. In our simulations, primate-like agents forage on a variable resource landscape while maintaining spatial cohesion with conspecifics to varying degrees. The agents' energy intake rate, daily distance traveled, and variance in energy intake were recorded. Using Morris Elementary Effects sensitivity analysis, we tested the sensitivity of 10 model parameters, of which 2 controlled gregarious behavior and 8 controlled food resources, including multiple aspects of temporal and spatial heterogeneity. We found that, while gregariousness generally increased feeding competition, the costs of gregariousness were much lower when resources were less variable over time (i.e., when calorie extraction was slow and resource renewal was frequent). We also found that maintaining proximity to other agents resulted in lower variance in energy intake when resources were more variable over time. Thus, it appears that the costs and benefits of gregariousness are strongly influenced by the temporal characteristics of food resources, giving insight into the pressures that shaped the evolution of sociality and group living, including in our own lineage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.