Abstract

Abstract. Landsat Normalised Difference Vegetation Index (NDVI) is commonly used to monitor post-fire green-up; however, most studies do not distinguish new growth of conifer from deciduous or herbaceous species, despite potential consequences for local climate, carbon and wildlife. We found that dual season (growing and snow cover) NDVI improved our ability to distinguish conifer tree presence and density. We then examined the post-fire pattern (1984–2017) in Landsat NDVI for fires that occurred a minimum of 20 years ago (1986–1997). Points were classified into four categories depending on whether NDVI, 20 years post-fire, had returned to pre-fire values in only the growing season, only under snow cover, in both seasons or neither. We found that each category of points showed distinct patterns of NDVI change that could be used to characterise the average pre-fire and post-fire vegetation condition Of the points analysed, 43% showed a between-season disagreement if NDVI had returned to pre-fire values, suggesting that using dual-season NDVI can modify our interpretations of post-fire conditions. We also found an improved correlation between 5- and 20-year NDVI change under snow cover, potentially attributable to snow masking fast-growing herbaceous vegetation. This study suggests that snow-cover Landsat imagery can enhance characterisations of forest recovery following fire.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.