Abstract

Prolonged dormancy is a stage in herbaceous perennial plants in which some individuals remain alive below ground for one or more growing seasons instead of emerging. Prolonged dormancy is puzzling, because foregoing opportunities for growth and reproduction seems costly. However, studies have shown that it buffers plants from the negative consequences associated with environmental stochasticity, suggesting that dormancy is a beneficial strategy to avoid the risks of stress above ground. If so, emergence during unfavorable conditions should have significant costs. Here, we test the hypothesis that emergence during times of stress has negative demographic consequences in a native perennial forb, Astragalus scaphoides, and investigate the potential underlying physiological mechanisms. We measured plant responses to a severe seasonal drought and an experimental defoliation to ask: (1) How do emergent plants respond to above-ground stress? (2) Do these responses have negative demographic consequences? and (3) Based on these responses, does stress increase the risk of emergence? Plants showed remarkable physiological tolerance to stress in the short term: high temperatures and low moisture did not have a strong effect on photosynthesis rates, and neither drought nor defoliation significantly impacted stored resources. However, stress did result in demographic costs for emergent plants relative to plants experiencing more favorable conditions. Drought resulted in decreased flowering probabilities relative to the long-term average and defoliation significantly increased mortality rates. These results demonstrate that the risk of emerging and experiencing stress entails considerable costs, supporting the hypothesis that prolonged dormancy is a beneficial strategy to avoid such risk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call