Abstract

Insertion sequences are transposable elements that can represent substantial proportions of prokaryotic genomes and play a substantial role in shaping host genome evolution. As such, evaluating and understanding insertion sequence diversity is an important task to fulfill, because it is expected to yield new insight into the evolution of bacterial transposable elements and contribute to improve genome annotations. Here, I characterized an insertion sequence, termed ISWpi1, for which the taxonomic distribution appears to be restricted to the obligate intracellular alpha-Proteobacterium Wolbachia pipientis. ISWpi1 exhibits ∼ 46% identity at the amino acid level with members of the IS1031 group of insertion sequences from the IS5 family. However, the IS1031 group is characterized by a transposase gene encoded by a single open reading frame, whereas the ISWpi1 transposase gene consists of two overlapping open reading frames presumably translated as a single protein via programmed translational frameshifting. Such structure suggests that ISWpi1 may instead be related to the IS427 group of insertion sequences from the IS5 family. Altogether, these data indicate that ISWpi1 extends the known spectrum of diversity of the IS5 family, and I propose to define a novel group of insertion sequences within the IS5 family typified by ISWpi1. Probable transpositional activity, relevant insertion site preferences and taxonomic specificity make ISWpi1 a promising tool for experimentally manipulating W. pipientis bacteria, especially in light of the increasing interest in developing these bacteria as tools for controlling insect disease vectors and agricultural pests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call