Abstract
The ISTTOK tokamak was upgraded with a plasma control system based on the Advanced Telecommunications Computing Architecture (ATCA) standard. This control system was designed to improve the discharge stability and to extend the operational space to the alternate plasma current (AC) discharges as part of the ISTTOK scientific program. In order to accomplish these objectives all ISTTOK diagnostics and actuators relevant for real-time operation were integrated in the control system.The control system was programmed in C++ over the Multi-threaded Application Real-Time executor (MARTe) which provides, among other features, a real-time scheduler, an interrupt handler, an intercommunications interface between code blocks and a clearly bounded interface with the external devices. As a complement to the MARTe framework, the BaseLib2 library provides the foundations for the data, code introspection and also a Hypertext Transfer Protocol (HTTP) server service.Taking advantage of the modular nature of MARTe, the algorithms of each diagnostic data processing, discharge timing, context switch, control and actuators output reference generation, run on well-defined blocks of code named Generic Application Module (GAM). This approach allows reusability of the code, simplified simulation, replacement or editing without changing the remaining GAMs.The ISTTOK control system GAMs run sequentially each 100μs cycle on an Intel® Q8200 4-core processor running at 2.33GHz located in the ATCA crate. Two boards (inside the ATCA crate) with 32 analog-to-digital converters (ADCs) were used for acquiring the diagnostics data. Each ADC operates at 2Msample/s but (for real-time operation) the acquired data is decimated in real-time on the board's Field-programmable gate array (FPGA) to a frequency defined by the control cycle time.This paper presents the ISTTOK real-time architecture and the human–machine Interface (HMI) for simplified AC discharge programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.