Abstract

Reliable drop test simulations of electronic packages require reliable material characterization of solder joints. Mechanical properties of lead-free solder were here experimentally investigated for both monotonic and cyclic loading at different strain rates. With regards to the observed complex material behavior, the nonlinear mixed hardening Armstrong and Frederick model combined with the Perzyna viscoplastic law was chosen to fit the experimental data. This model was subsequently implemented into a commercial finite element code and used to simulate drop tests. Actual drop test experiments were conducted in parallel and experimental results were compared to simulations. Prediction discrepancies were analyzed and explanations suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.