Abstract

Purpose: To investigate how respiration influences the motion of lung and pancreas tumors and to relate the observations to treatment procedures intended to improve dose alignment by predicting the moving tumor’s position from external breathing indicators. Methods and materials: Breathing characteristics for five healthy subjects were observed by optically tracking the displacement of the chest and abdomen, and by measuring tidal air volume with a spirometer. Fluoroscopic imaging of five radiotherapy patients detected the motion of lung and pancreas tumors synchronously with external breathing indicators. Results: The external and fluoroscopic data showed a wide range of behavior in the normal breathing pattern and its effects on the position of lung and pancreas tumors. This included transient phase shifts between two different external measures of breathing that diminished to zero over a period of minutes, modulated phase shifts between tumor and chest wall motion, and other complex phenomena. Conclusions: Respiratory compensation strategies that infer tumor position from external breathing signals, including methods of beam gating and dynamic beam tracking, require three-dimensional knowledge of the tumor’s motion trajectory as well as the ability to detect and adapt to transient and continuously changing characteristics of respiratory motion during treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.