Abstract

Regression calibration is a popular approach for correcting biases in estimated regression parameters when exposure variables are measured with error. This approach involves building a calibration equation to estimate the value of the unknown true exposure given the error-prone measurement and other covariates. The estimated, or calibrated, exposure is then substituted for the unknown true exposure in the health outcome regression model. When used properly, regression calibration can greatly reduce the bias induced by exposure measurement error. Here, we first provide an overview of the statistical framework for regression calibration, specifically discussing how a special type of error, called Berkson error, arises in the estimated exposure. We then present practical issues to consider when applying regression calibration, including: 1) how to develop the calibration equation and which covariates to include; 2) valid ways to calculate standard errors of estimated regression coefficients; and 3) problems arising if one of the covariates in the calibration model is a mediator of the relationship between the exposure and outcome. Throughout, we provide illustrative examples using data from the Hispanic Community Health Study/Study of Latinos (United States, 2008-2011) and simulations. We conclude with recommendations for how to perform regression calibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.