Abstract
Research issues in complex event processing (CEP) emphasizing on query optimization.Cover deterministic probabilistic models, centralized distributed settings.Issues for CEP optimization over Big Data enabling cloud computing platforms.Predictive Analytics and CEP in cloud platforms even with dispersed resource pools. Many Big Data technologies were built to enable the processing of human generated data, setting aside the enormous amount of data generated from Machine-to-Machine (M2M) interactions and Internet-of-Things (IoT) platforms. Such interactions create real-time data streams that are much more structured, often in the form of series of event occurrences. In this paper, we provide an overview on the main research issues confronted by existing Complex Event Processing (CEP) techniques, with an emphasis on query optimization aspects. Our study expands on both deterministic and probabilistic event models and spans from centralized to distributed network settings. In that, we cover a wide range of approaches in the CEP domain and review the current status of techniques that tackle efficient query processing. These techniques serve as a starting point for developing Big Data oriented CEP applications. Therefore, we further study the issues that arise upon trying to apply those techniques over Big Data enabling technologies, as is the case with cloud platforms. Furthermore, we expand on the synergies among Predictive Analytics and CEP with an emphasis on scalability and elasticity considerations in cloud platforms with potentially dispersed resource pools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.