Abstract
All-solid-state batteries have attracted wide attention for high-performance and safe batteries. The combination of solid electrolytes and lithium metal anodes makes high-energy batteries practical for next-generation high-performance devices. However, when a solid electrolyte replaces the liquid electrolyte, many different interface/interphase issues have arisen from the contact with electrodes. Poor wettability and unstable chemical/electrochemical reaction at the interfaces with lithium metal anodes will lead to poor lithium diffusion kinetics and combustion of fresh lithium and active materials in the electrolyte. Element cross-diffusion and charge layer formation at the interfaces with cathodes also impede the lithium ionic conductivity and increase the charge transfer resistance. The abovementioned interface issues hinder the electrochemical performance of all-solid-state lithium metal batteries. This review demonstrates the formation and mechanism of these interface issues between solid electrolytes and anodes/cathodes. Aiming to address the problems, we review and propose modification strategies to weaken interface resistance and improve the electrochemical performance of all-solid-state lithium metal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.