Abstract

Purpose. The Black Sea region where the forest fires were recorded by the FIRMS system, as well as the atmosphere above it, namely the fire-induced variation of the atmospheric aerosol basic optical characteristics, were the main objects of the investigation. The study is aimed at examining the fires in the Black Sea region in 2018–2019 for assessing correlation between these events and variability of the basic optical characteristics over the Black Sea. Methods and Results. Based on the FIRMS system data, variations of intensity of the fire-induced radiation were studied. The results of statistical processing of the MODIS and VIIRS satellite data on the fires in 2018–2019 were represented. For the dates when the fire numbers were the highest in the Black Sea region, the basic optical and microphysical characteristics of the atmospheric aerosol were analyzed due to the SPM and AERONET data. The dates when the fire intensity was particularly high (based on the MODIS and VIIRS data) were analyzed and compared with the dates when the anomalous values of the atmospheric aerosol optical characteristics were recorded over the region under study. Conclusions. For the fire events in the Black Sea region revealed due to the MODIS and VIIRS data, complex analysis of the air mass transfer was performed by the model HYSPLIT, and the aerosol was typed by the CALIPSO algorithm. On June 22, 2019 the most intense fires were recorded. According to the aerosol typing by the CALIPSO algorithm, on this day the predominant aerosol types were the contaminated dust and smoke. Using the MODIS and VIIRS data, investigation of possible source of the aerosol transfer on this date showed that the area of intense inflammationn and smoke was located to the northeast from the Black Sea region. Since the satellite-derived data on this day showed no dust transfer either from the Sahara or the Syria deserts, it is possible to conclude that increase of the values of aerosol optical thickness АОD (500) was conditioned by transfer of the aerosol resulted from biomass burning from the north to the Black Sea region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call