Abstract

For one-dimensional parabolic partial differential equations with disturbances at both boundaries and distributed disturbances we provide input-to-state stability (ISS) estimates in various norms. Due to the lack of an ISS Lyapunov functional for boundary disturbances, the proof methodology uses (i) an eigenfunction expansion of the solution, and (ii) a finite-difference scheme. The ISS estimate for the sup-norm leads to a refinement of the well-known maximum principle for the heat equation. Finally, the obtained results are applied to quasi-static thermoelasticity models that involve nonlocal boundary conditions. Small-gain conditions that guarantee the global exponential stability of the zero solution for such models are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.