Abstract
Utilizing multi-target drugs shows great promise as an effective strategy against polygenic diseases characterized by intricate patho-mechanisms, such as ulcers, skin dermatitis, and cancers. The current research centers around the creation of hybrid compounds, connecting dibenzazepine and isoxazole, with the aim of exploring their potential as inhibitors for urease and tyrosinase enzymes. Analogs 6a, 6b, 6d, 6 h-6j, and 6 l demonstrated strong inhibitory potential against tyrosinase enzyme with IC50 values of 4.32 ± 0.31–12.36 ± 0.48. Whereas analogs 6a, 6c, 6e, 6f, 6h-6m, and 6r exhibited potent inhibitory activities against urease enzyme with IC50 values of 3.67 ± 0.91–15.60 ± 0.18 μM. Furthermore, compounds 6i, 6n, and 6r showed weak toxic effect in BJ-cell line, whereas the remaining compounds were found non-toxic to normal cell line. The mechanistic studies of potent inhibitors of both the enzymes showed competitive mode of inhibition. Molecular docking was employed to establish the relationship between structure and activity and to elucidate the interaction mechanism. This analysis revealed that the active analogs exhibited crucial interactions with the active site residues of urease and tyrosinase, thus corroborating our experimental results. Hence, the generated derivatives of dibenzazepine-linked isoxazoles present intriguing starting points for further investigations into their potential as inhibitors of urease and tyrosinase, with the potential for future modification and enhancement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.