Abstract
Isoxazole 9 (ISX9) is a neurogenesis-promoting small molecule compound that can up-regulate the expression of NeuroD1 and induce differentiation of neuronal, cardiac and islet endocrine progenitors. So far, the molecular mechanisms underlying the action of ISX9 still remain elusive. To identify a novel agonist of the Wnt/β-catenin, a cell-based SuperTOPFlash reporter system was used to screen known-compound libraries. An activation effect of ISX9 on the Wnt/β-catenin pathway was analysed with the SuperTOPFlash or SuperFOPFlash reporter system. Effects of ISX9 on Axin1/LRP6 interaction were examined using a mammalian two-hybrid system, co-immunoprecipitation, microscale thermophoresis, emission spectra and mass spectrometry assays. The expression of Wnt target and stemmness marker genes were evaluated with real-time PCR and immunoblotting. In vivo hair regeneration abilities of ISX9 were analysed by immunohistochemical staining, real-time PCR and immunoblotting in hair regrowth model using C57BL/6J mice. In this study, ISX9 was identified as a novel agonist of the Wnt/β-catenin pathway. ISX9 targeted Axin1 by covalently binding to its N-terminal region and potentiated the LRP6-Axin1 interaction, thereby resulting in the stabilization of β-catenin and up-regulation of Wnt target genes and stemmness marker genes. Moreover, the topical application of ISX9 markedly promoted hair regrowth in C57BL/6J mice and induced hair follicle transition from telogen to anagen via enhancing Wnt/β-catenin pathway. Taken together, our study unravelled that ISX9 could activate Wnt/β-catenin signalling by potentiating the association between LRP6 and Axin1, and may be a promising therapeutic agent for alopecia treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.