Abstract

The perpendicular and parallel moments of inertia are calculated as a function of the temperature by taking into account the isovector pairing. The used single-particles energies are those of a deformed Woods-Saxon mean-field. The obtained results are compared to their homologues of the conventional Finite Temperature BCS (FTBCS) theory. With this aim, the generalized gap equations have been solved for even-even heated deformed nuclei such as Z = 30 – 38 and N – Z = 0, 2, 4. The isovector pairing effect leads to a change in the behavior of the perpendicular and parallel moments of inertia. Moreover, there is a non-negligible discrepancy between the perpendicular and parallel moments of inertia values calculated within the two models when T < Tcnp (Tcnp being the critical temperature beyond which the neutron-proton (np) gap parameter vanishes). Beyond this temperature, a discrepancy between the two models persists. It is due to the shift of the critical temperatures of the proton (Tcpp) and neutron (Tcnn) systems when evaluated with and without inclusion of the isovector pairing effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call