Abstract

The particle number projected BCS (PBCS) approximation is tested against the exact solution of the SO(5) Richardson-Gaudin model for isovector pairing in a system of nondegenerate single-particle orbits. Two isovector PBCS wave functions are considered. One is constructed as a single proton-neutron pair condensate; the other corresponds to a product of a neutron pair condensate and a proton pair condensate. The PBCS equations are solved using a recurrence method and the analysis is performed for systems with an equal number of neutrons and protons distributed in a sequence of equally spaced fourfold (spin-isospin) degenerate levels. The results show that although PBCS offers significant improvement over BCS, the agreement of PBCS with the exact solution is less satisfactory than in the case of the SU(2) Richardson model for pairing between like particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.