Abstract

We propose a particle number conserving formalism for the treatment of isovector-isoscalar pairing in nuclei with $N>Z$. The ground state of the pairing Hamiltonian is described by a quartet condensate to which is appended a pair condensate formed by the neutrons in excess. The quartets are built by two isovector pairs coupled to the total isospin $T=0$ and two collective isoscalar proton-neutron pairs. To probe this ansatz for the ground state we performed calculations for $N>Z$ nuclei with the valence nucleons moving above the cores $^{16}$O, $^{40}$Ca and $^{100}$Sn. The calculations are done with two pairing interactions, one state-independent and the other of zero range, which are supposed to scatter pairs in time-revered orbits. It is proven that the ground state correlation energies calculated within this approach are very close to the exact results provided by the diagonalization of the pairing Hamiltonian. Based on this formalism we have shown that moving away of N=Z line, both the isoscalar and the isovector proton-neutron pairing correlations remain significant and that they cannot be treated accurately by models based on a proton-neutron pair condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.