Abstract

Fluxional Wankel motor molecules have received considerable attention in recent years in both chemistry and nanoscience. Based on extensive first-principles theory calculations, we present herein the smallest neutral quasi-planar alkaline-earth metal-doped Wankel motor complex Cs BeB12 (BeB2@B10), which is isovalent with C2v B+13 (B3@B10+). The global minimum (GM) Cs BeB12 (1) and transition state (TS) Cs BeB12 (2) correspond to the C2v TS (4) and C2v GM (3) of B+13, respectively. Molecular dynamics simulations show that, with ten equivalent GMs and ten equivalent TSs intervals, the B10 outer ring in BeB12 (1/2) overcomes the rotational energy barrier to rotate almost freely around the BeB2 triangular core above 800 K in a rotation angle of 36° in each step. Detailed bonding analyses indicate that, in addition to the ten localized periphery B-B bonds, both Cs BeB12 (1) and Cs BeB12 (2) possess three delocalized bonding systems over the molecular framework satisfying the (4n+2) Hückel rule, making the neutral complex 2σ + π triply aromatic in nature and highly stable in thermodynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.