Abstract
Isovalent dopants (D) incorporated in the silicon (Si) lattice can readily associate with vacancies to form dopant-vacancy pairs. Theoretical and experimental studies have shown that vacancies (V) tent to accumulate around isovalent dopants to form DVn clusters, where D is carbon (C) germanium (Ge), tin (Sn) and lead (Pb). Using spin polarised density functional theory, we examine the lowest energy structures of D, DV and VDV (D = C, Ge, Sn and Pb) and the energies to form defects and defect clusters from point defects. The results show that substitution of Ge is thermodynamically favourable. Formation of DV and VDV clusters is endoergic for all for dopants. Binding is favourable for all clusters and even more favourable for larger dopants such Sn and Pb. The results are discussed using ionisation energy, structural parameters, Bader charges and electronic structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.