Abstract

Tumor cells express the glycolytic regulator pyruvate kinase subtype M2 (M2-PK), which can occur in a tetrameric form with high affinity to its substrate phosphoenolpyruvate (PEP) and a dimeric form with a low PEP affinity. The transition between both conformations contributes to the control of glycolysis and is important for tumor cell proliferation and survival. Here we targeted M2-PK by synthetic peptide aptamers, which specifically bind to M2-PK and shift the isoenzyme into its low affinity dimeric conformation. The aptamer-induced dimerization and inactivation of M2-PK led to a significant decrease in the PK mass-action ratio as well as ATP:ADP ratio in the target cells. Furthermore, the expression of M2-PK-binding peptide aptamers moderately reduced the growth of immortalized NIH3T3 cell populations by decelerating cell proliferation, but without affecting apoptotic cell death. Moreover, the M2-PK-binding peptide aptamers also reduced the proliferation rate of human U-2 OS osteosarcoma cells. In the present study, we developed the first specific inhibitors of the pyruvate kinase isoenzyme type M2 and present evidence that these inhibitors moderately decelerate tumor cell proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.