Abstract

Online trace analysis based on UV/Vis spectroscopy requires long detection paths. Therefore an isotropic wet etch process in silicon is developed to fabricate a 300µm deep channel with low channel wall roughness for desired light guidance application. Four etchant compositions were compared in terms of etching rate, surface roughness and selectivity in a beaker process. The best fitting mixture was selected. To further increase the surface quality (bubble issue) a spin etcher tool is used for producing the channels. The dependence of homogeneity and defect density on media flux, and rotation velocity was investigated. Results show that high rotation velocity and high media flux lead to great defects in the channel wall. Through rotation of the wafer during etching, the etching rate of silicon rises compared to the beaker process due to the rapid removal of etch products and simultaneous supply of fresh etchant. After 38min of etching, 300µm deep semi-circular channels with high optical quality (Rq=10nm±2nm) over 3m were produced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.