Abstract

A phenomenological model is developed to describe the isotropic-smectic-C phase transition in liquid-crystalline side-chain elastomers. We analyze the influence of external mechanical stress on the isotropic-smectic-C phase transition. While this phase transition is first order in low-molecular-weight materials, we show here that the order of this transition does not change in liquid-crystalline elastomers. The temperature dependence of the heat capacity and the nonlinear dielectric effect in the isotropic phase above the isotropic-smectic-C phase transition in liquid crystalline elastomers are calculated. The theoretical results are found to be in good agreement with experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.