Abstract

We study a novel abelian gauge theory in 2+1 dimensions which has surprising theoretical and phenomenological features. The theory has a vanishing coefficient for the square of the electric field $e_i^2$, characteristic of a quantum critical point with dynamical critical exponent $z=2$, and a level-$k$ Chern-Simons coupling, which is {\it marginal} at this critical point. For $k=0$, this theory is dual to a free $z=2$ scalar field theory describing a quantum Lifshitz transition, but $k \neq 0$ renders the scalar description non-local. The $k \neq 0$ theory exhibits properties intermediate between the (topological) pure Chern-Simons theory and the scalar theory. For instance, the Chern-Simons term does not make the gauge field massive. Nevertheless, there are chiral edge modes when the theory is placed on a space with boundary, and a non-trivial ground state degeneracy $k^g$ when it is placed on a finite-size Riemann surface of genus $g$. The coefficient of $e_i^2$ is the only relevant coupling; it tunes the system through a quantum phase transition between an isotropic fractional quantum Hall state and an anisotropic fractional quantum Hall state. We compute zero-temperature transport coefficients in both phases and at the critical point, and comment briefly on the relevance of our results to recent experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.