Abstract
The present paper completes our earlier results on nonlinear stability of stationary solutions of the Vlasov-Poisson system in the stellar dynamics case. By minimizing the energy under a mass-Casimir constraint we construct a large class of isotropic, spherically symmetric steady states and prove their nonlinear stability against general, i. e., not necessarily symmetric perturbations. The class is optimal in a certain sense, in particular, it includes all polytropes of finite mass with decreasing dependence on the particle energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.