Abstract

This work reports on the emergence of quantum Griffiths singularity (QGS) associated with the magnetic field induced superconductor-metal transition (SMT) in unconventional Nd_{0.8}Sr_{0.2}NiO_{2} infinite layer superconducting thin films. The system manifests isotropic SMT features under both in-plane and perpendicular magnetic fields. Importantly, after scaling analysis of the isothermal magnetoresistance curves, the obtained effective dynamic critical exponents demonstrate divergent behavior when approaching the zero-temperature critical point B_{c}^{*}, identifying the QGS characteristics. Moreover, the quantum fluctuation associated with the QGS can quantitatively explain the upturn of the upper critical field around zero temperature for both the in-plane and perpendicular magnetic fields in the phase boundary of SMT. These properties indicate that the QGS in the Nd_{0.8}Sr_{0.2}NiO_{2} superconducting thin film is isotropic. Moreover, a higher magnetic field gives rise to a metallic state with the resistance-temperature relation R(T) exhibiting lnT dependence among the 2-10K range and T^{2} dependence of resistance below 1.5K, which is significant evidence of Kondo scattering. The interplay between isotropic QGS and Kondo scattering in the unconventional Nd_{0.8}Sr_{0.2}NiO_{2} superconductor can illustrate the important role of rare region in QGS and help to uncover the exotic superconductivity mechanism in this system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.