Abstract

In this paper, we consider an infinite-dimensional isotropic non-Lipschitz optimization problem with ℓ 2 , p \ell _{2,p} ( 0 > p > 1 0>p>1 ) regularizer for random fields on the unit sphere with spherical harmonic representations. The regularizer not only gives a group sparse solution, but also preserves the isotropy of the regularized random field represented by the solution. We present first order and second order necessary optimality conditions for local minimizers of the optimization problem. We also derive two lower bounds for the nonzero groups of stationary points, which are used to prove that the infinite-dimensional optimization problem can be reduced to a finite-dimensional problem. Moreover, we propose an iteratively reweighted algorithm for the finite-dimensional problem and prove its convergence. Finally, numerical experiments on Cosmic Microwave Background data are presented to show the efficiency of the non-Lipschitz regularization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.