Abstract
AbstractZrW2O8 (ZrO2•2WO3) and HfW2O8 (HfO2•2WO3) have been the focus of thermal expansion studies due to their isotropic negative thermal expansion (NTE) measured previously at temperatures below 775°C. This work presents measurements of these materials at their thermodynamically stable temperature ranges of 1105 and 1257°C for ZrW2O8 and 1105–1276°C for HfW2O8, where they were characterized with in situ, powder X‐ray diffraction. The linear coefficients of thermal expansion were measured to be −5.52 × 10−6 and −4.87 × 10−6°C−1 for ZrW2O8 and HfW2O8, respectively. The mechanism leading to this NTE is discussed. Powder samples were synthesized by a solution‐based process called the organic–inorganic steric entrapment method. In situ characterization in air was carried out at the National Synchrotron Light Source II using a hexapole lamp, optical furnace and the Advanced Photon Source using a quadrupole lamp, optical furnace to achieve elevated temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.