Abstract

Purpose: To develop a synergistic image reconstruction framework that exploits multicontrast (MC), multicoil, and compressed sensing (CS) redundancies in magnetic resonance imaging (MRI). Approach: CS, MC acquisition, and parallel imaging (PI) have been individually well developed, but the combination of the three has not been equally well studied, much less the potential benefits of isotropy within such a setting. Inspired by total variation theory, we introduce an isotropic MC image regularizer and attain its full potential by integrating it into compressed MC multicoil MRI. A convex optimization problem is posed to model the new variational framework and a first-order algorithm is developed to solve the problem. Results: It turns out that the proposed isotropic regularizer outperforms many of the state-of-the-art reconstruction methods not only in terms of rotation-invariance preservation of symmetrical features, but also in suppressing noise or streaking artifacts, which are normally encountered in PI methods at aggressive undersampling rates. Moreover, the new framework significantly prevents intercontrast leakage of contrast-specific details, which seems to be a difficult situation to handle for some variational and low-rank MC reconstruction approaches. Conclusions: The new framework is a viable option for image reconstruction in fast protocols of MC parallel MRI, potentially reducing patient discomfort in otherwise long and time-consuming scans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call