Abstract

Mg3Sb2 compounds were synthesized via low-temperature solid-state reaction (SSR) and ball milling (BM), respectively, followed by spark plasma sintering (SPS) process. The effects of possible sintering pressure-induced orientation in the SPS process have been investigated in terms of the microstructure and thermoelectric transport properties. The results indicate that BM technique causes more severe Mg loss than pure SSR method, leading to distinct Sb phase existing in the product after SPS consolidation process. On the contrary, a single phase of Mg3Sb2 is easily obtained with the combination of SSR and SPS techniques. Besides, these BM–SPS and SSR–SPS samples exhibit the similar microstructure as well as the same electrical and thermal transport properties parallel or perpendicular to the direction of sintering pressure. The study suggests that SSR method embodies the advantages of both the composition control and the orientation elimination in Mg3Sb2 compound as compared to BM method with the specific parameters in the current work. This investigation is quite favorable for this material fabrication and the future application of thermoelectric modules and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.