Abstract

When PGSE NMR is applied to water in microheterogeneous materials such as liquid crystals, foodstuffs, porous rocks, and biological tissues, the signal attenuation is often multi-exponential, indicating the presence of pores having a range of sizes or anisotropic domains having a spread of orientations. Here we modify the standard PGSE experiment by introducing low-amplitude harmonically modulated gradients, which effectively make the q-vector perform magic-angle spinning (MAS) about an axis fixed in the laboratory frame. With this new technique, denoted q-MAS PGSE, the signal attenuation depends on the isotropic average of the local diffusion tensor. The capability of q-MAS PGSE to distinguish between pore size and domain orientation dispersion is demonstrated by experiments on a yeast cell suspension and a polydomain anisotropic liquid crystal. In the latter case, the broad distribution of apparent diffusivities observed with PGSE is narrowed to its isotropic average with q-MAS PGSE in a manner that is analogous to the narrowing of chemical shift anisotropy powder patterns using magic-angle sample spinning in solid-state NMR. The new q-MAS PGSE technique could be useful for resolving size/orientation ambiguities in the interpretation of PGSE data from, e.g., water confined within the axons of human brain tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.