Abstract
A tantalizing hint of isotropic cosmic birefringence has been found in the $E B$ cross-power spectrum of the cosmic microwave background (CMB) polarization data with a statistical significance of $3\sigma$. A pseudoscalar field coupled to the CMB photons via the Chern-Simons term can explain this observation. The same field may also be responsible for early dark energy (EDE), which alleviates the so-called Hubble tension. Since the EDE field evolves significantly during the recombination epoch, the conventional formula that relates $E B$ to the difference between the $E$- and $B$-mode auto-power spectra is no longer valid. Solving the Boltzmann equation for polarized photons and the dynamics of the EDE field consistently, we find that currently favored parameter space of the EDE model yields a variety of shapes of the $EB$ spectrum, which can be tested by CMB experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.