Abstract

This study assesses the various methodologies utilized in the literature for computational mandible modeling and their implications on research findings. Previous studies have explored diverse material properties for the mandible, whether modeled as a single entity, in pairs, or as multiple sub-regions. Within this framework, a finite element model of an intact mandible was created using sliced tomographic images to examine the dispersion of stress fields resulting from different sets of bone material properties sourced from specialized literature. This research introduces the methodology employed in mandible model development, strategies for achieving high precision, and the influence of mechanical properties. Through an evaluation of models proposed by different authors, significant dispersion was observed, leading to disparities ranging from 4.4% to 67.4% in stress field outcomes at the symphysis region. RMSE served as an estimator to assess the similarity between these models. The findings suggest that the Caraveo (2008) and Palka (2020) models exhibit notable convergence in predicting stress fields in the symphysis regions. By incorporating good modeling practices in the intact mandible model, a more reliable representation is ensured, laying the groundwork for future investigations involving nonlinear contact phenomena and topology optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.