Abstract

Since quasicrystals have positional and orientational long-range order, they are essentially anisotropic. However, the researches show that some physical properties of quasicrystals are isotropic. On the other hand, quasicrystals have additional phason degrees of freedom which can influence on their physical behaviours. To reveal the quasicrystal anisotropy, we investigate the quasicrystal elasticity and other physical properties, such as thermal expansion, piezoelectric and piezoresistance, for which one must consider the contributions of the phason field. The results indicate that: for the elastic properties, within linear phonon domain all quasicrystals are isotropic, and within nonlinear phonon domain the planar quasicrystals are still isotropic but the icosahedral quasicrystals are anisotropic. Moreover, the nonlinear elastic properties due to the coupling between phonons and phasons may reveal the anisotropic structure of QCs. For the other physical properties all quasicrystals behave like isotropic media except for piezoresistance properties of icosahedral quasicrystals due to the phason field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.