Abstract

Methane seepage has been extensively observed in various continental margin settings. It has profound effects on the marine redox environment and the molybdenum (Mo) cycles in marine sediments. Therefore, there has been much recent attention on the redox-sensitive behavior of Mo in methane seepage environments. However, the characteristics of the Mo isotope composition in the cold-seep system remain poorly understood. In this study, we performed geochemical analyses, including Mo content and isotope composition, on sediment samples (core QDN-MS6) from the “Haima” cold-seep deposit area in the South China Sea. The analysis reveals a significant concentration of authigenic pyrite in the mid-section of QDN-MS6 core (373–403 cm). Moreover, the δ34S value in this interval is notably elevated with high total sulfur/total organic carbon ratio. Additionally, the sediments in the mid-section exhibits substantial enrichment in Mo (enrichment factors of Mo ranging from 5.29 to 39.32). This implies that the sediments in the mid-section are influenced by sulfate-driven anaerobic oxidation of methane. Most notably, the sediments in the mid-section displayed distinct low δ98Mo values (with an average of −0.7‰). After careful consideration, we ruled out the influence of organic matter, an oxic environment, a weakly sulfidic environment, and incomplete removal of thiopolybdate as contributing factors. Based on δ56Fe-Fe/Al ratios, (Mo–U) enrichment factors, and As enrichment factors, we propose that the “benthic Fe-Mn redox shuttle process” is the primary cause of the observed light δ98Mo signatures in sediments. This newly identified mechanism sheds light on Mo isotope cycling in methane seepage environments and enhances our understanding of the Mo isotope cycling process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.