Abstract

The Pleasant Bay layered gabbro-diorite complex (420 Ma) formed via repeated injections of mafic magma into a felsic magma chamber. It is dominated by repeating sequences (macrorhythmic units) with chilled gabbroic bases which may grade upward into medium-grained gabbro, diorite and granite. Each unit represents an injection of mafic magma into the chamber followed by differentiation. Increases in Sri and decreases in eNdi with stratigraphic height indicate open-system isotopic behaviour and exchange between the mafic and felsic magmas. Isotopic variations of whole-rock samples in individual macrorhythmic units do not conform to bulk mixing or AFC models between potential parental magmas. Sr isotopic studies of single feldspar crystals from one macrorhythmic unit indicate that exchange of crystals between the resident felsic magma and mafic influxes was important, that some of the rocks contain feldspar xenocrysts, and that the rocks are isotopically heterogeneous on an intercrystal scale. Xenocryst abundance increases with stratigraphic height, suggesting that crystal exchange occurred in situ. The lack of disequilibrium textures in the xenocrystic feldspar indicates the evolved macrorhythmic magma and resident silicic magma were of a similar composition and likely in thermal equilibrium at the time of crystal transfer. Mafic chilled margins are enriched in alkalis and isotopically evolved compared with mafic dikes (representing the parental melts) and suggest rapid in-situ diffusional exchange following emplacement of individual mafic replenishments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call