Abstract

Characterizing dietary resources and species interactions in estuaries is challenging, particularly when considering the dynamic nature of these ecosystems, the ranges in body sizes of species, and the potential for trophic roles to vary with ontogeny. We examined the influence of season and location on relationships between body size and δ15N, δ13C, and δ34S values across a range of fishes from two subtropical estuaries. The results suggest that isotopic values of estuarine fishes are independent of body size. However, seasonal variation propagated throughout the assemblage as the majority of fishes integrated different δ15N, δ13C, or δ34S values. The absence of δ15N–, δ13C–, and δ34S–body size relationships suggests that either (1) dietary preference of these fishes do not shift within the range of body sizes sampled, (2) these fishes shift to an alternate diet that is not isotopically distinct, or (3) that spatial and temporal variation in isotopic signatures of prey negate any size-based relationships. Seasonal variability in the isotopic values of these fishes suggests either movement to an alternative habitat or a shift in organic matter source associated with the transition of dry to wet seasons. Moreover, variance distributions of the best-fit models indicate that seasonal dietary preferences of conspecifics do not vary over moderate spatial scales. Seasonal variability among fishes in these estuaries suggests plasticity in feeding strategies that may afford greater adaptive flexibility to these species in response to changes in food availability resulting from variable environmental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call