Abstract

Abstract Carbon (C) release from plant and microbial residues is a primary pathway of energy flow from photosynthetic and metabolic biomass to carbon dioxide (CO2) in terrestrial ecosystems. Traditional view show that microbial residue C is more resistant to decompose than plant litter because their smaller particle sizes could be preferentially occluded in microaggregates with less microbial accessibility. However, we still lack a quantitative assessment (i.e. isotopic C labeling) to isolate the progressive release of C fractions from both plant and microbial residues. Here we used a global data set of 117 decomposition experiments that traced the 13C or 14C release of isotopically labeled plant and microbial residues to estimate the C release rates and turnover times by using a first-order exponential kinetics model. The average C release rates of crop, grass and tree litter were 7.78, 3.79 and 2.11 yr−1, which were significantly lower than microbial residues (13.07 yr−1). Although C release rates of both plant and microbial residues were positively correlated with site temperature, the mean turnover time of microbial residues was 2–6 times lower than plant litter. We suggest that a constraint in microbial and plant residues leads to a predictable pattern of C release during terrestrial decomposition, which could be included in Earth system models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.