Abstract

The Sawayaerdun gold deposit is hosted by Carbonaceous metasediments and is considered to be the largest Muruntau-type gold deposit in the Chinese Tianshan metallogenic belt. Gold mineralization at Sawayaerdun occurs in quartz veins associated with three major hydrothermal events: an early, barren quartz vein stage, middle stage mineralized quartz veins with pyrite and late carbonate (-quartz) veins.The isotopic compositions of quartz and sulfides from the Sawayaerdun gold deposit show some variation but are generally comparable to those of other orogenic-type gold deposits. Fluids trapped in early-stage quartz have a δ18O range of 13.6‰ to 15.4‰, δD of −48‰ to −75‰, δ13C of 0.5‰ to 4.2‰ and δ30Si of −0.2‰ to 0‰. In contrast, isotopic compositions of fluids trapped in middle-stage quartz have δ18O values of 6.7‰ to 14.7‰, δD of −56‰ to −110‰, δ13C of 0.4‰ to 10.1‰ and δ30Si of −0.3‰ to 0‰. Diagenetic and hydrothermal pyrite have similar sulfur (−1.8‰ to 0.9‰) and Pb isotopic values that are associated with host rock compositions. The early-stage, 18O and 13C-rich fluids are probably derived from metamorphic decarbonation of the sedimentary host rock at depth, leading to the precipitation of early barren quartz veins. In the middle stage, a decrease in the regional pressure and temperature regime could have resulted in the incorporation of external fluids into the ore-forming system. These external fluids with isotopic signatures similar to that of the host rock and generally rich in 34S and radiogenic Pb mixed with original ore-forming fluids to generate extensive metal precipitation. Late-stage fluids trapped by calcite veins show isotopic compositions similar to meteoric water, indicating the cessation of hydrothermal fluid circulation at Sawayaerdun occurred at this time. The metallogenetic model illustrated by stable and Pb isotopes is also consistent with fluid inclusion studies in Sawayaerdun.The development of mineralization at Sawayaerdun is strongly linked to fluid mixing, as witnessed by the isotopic signatures of fluids from identified ore-bearing zones. The isotopic compositions of other anomalous zones at Sawayaerdun are similar to those of the mineralized zones, suggesting a high potential for further exploration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.