Abstract

An estimated 10% of plant species have evolved to steal C from their symbiotic fungal partners (mycoheterotrophy), and while physiological evidence for full and partial mycoheterotrophy is well developed in the Orchidaceae and Ericaceae, it is lacking for the majority of other mycoheterotrophic taxa. The family Gentianaceae not only contains several lineages of achlorophyllous mycoheterotrophs, but also contains species that are putative partially mycoheterotrophic. The North American genera Bartonia and Obolaria (Gentianaceae) are green but have leaves reduced to scales or foliose bracts and so have ambiguous mycoheterotrophic status. • We investigated the natural abundance (13)C and (15)N profiles of both genera along with total N and chlorophyll content and investigated mycorrhizal infection using light microscopy. • The shoots of B. virginica were significantly more enriched in (15)N than the surrounding vegetation but not in (13)C. In contrast, the shoots of O. virginica are not enriched in (15)N compared to the surrounding vegetation but were significantly enriched in (13)C. Total N concentrations were significantly higher than the surrounding vegetation in B. virginica, while the collaroid roots of both species were infected by arbuscular mycorrhizal fungi. • This microscopic evidence coupled with the natural abundance stable isotope profiles strongly suggests that both species are partially mycoheterotrophic. However, differences in the root-shoot stable isotopic patterns relative to surrounding vegetation between B. virginica and O. virginica are suggestive of the utilization of different physiological pathways or extent of commitment to mycoheterotrophic C gain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.