Abstract

The Caucasian orogenic wedge formed as a consequence of the closure of the Tethyan Ocean, and numerous fields of active mud volcanoes pepper the area adjacent to the Black and Caspian Seas. Stable isotope ratios of boron, helium, and carbon have been measured for gas, fluid and sediment samples from active mud volcanoes of Taman Peninsula and Georgia to estimate the sources and mobilization depths of the fluid phase and mud. Boron concentrations in mud volcano fluids were found to be 5–35× higher than seawater. Fluid isotope ratios vary between δ11B=22 and 39‰, while isotope ratios of the smectite- and illite-rich extruded mud are considerably depleted in heavy 11B (δ11B=−8 to +7‰). B contents of these muds are ~8× higher than modern marine sediments. This suggests that liquefaction prior to mud volcanism was accompanied by both B enrichment and isotope fractionation, most likely at an intermediate depth mud reservoir at 2–4 km.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call