Abstract
Unlike other marine-sedimentary manganese ore deposits, which are largely composed of manganese oxides, the primary ore at Molango (Hidalgo State, Mexico) is exclusively manganese carbonate (rhodochrosite, Mn-calcite, kutnahorite). Stable isotope studies of the carbonates from Molango provide critical new information relevant to the controversy over syngenetic and diagenetic models of stratiform manganese deposit formation. Negative δ 13C values for carbonates from mineralized zones at Molango are strongly correlated with manganese content both on a whole rock scale and by mineral species. Whole rock δ 13C data fall into three groups: high-grade ore = −16.4 to −11.5%.; manganese-rich, sub-ore-grade = −5.2 to 0%.; and unmineralized carbonates = 0 to +2.5%. (PDB). δ 18O data show considerable overlap in values among the three groups: +4.8 to −2.8, −5.4 to −0.3%., and −7.4 to +6.2 (PDB), respectively. Isotopic data for individual co-existing minerals suggest a similar separation of δ 13C values: δ 13C values from calcite range from −1.1 to +0.7%. (PDB), whereas values from rhodochrosite are very negative, −12.9 to −5.5%., and values from kutnahorite or Mn-calcite are intermediate between calcite and rhodochrosite. 13C data are interpreted to indicate that calcite ( i.e. unmineralized carbonate) formed from a normal marine carbon reservoir. However, 13C data for the manganese-bearing carbonates suggest a mixed seawater and organic source of carbon. The presence of only trace amounts of pyrite suggests sulfate reduction may have played a minor part in oxidizing organic matter. It is possible that manganese reduction was the predominant reaction that oxidized organic matter and that it released organic-derived CO 2 to produce negative δ 13C values and manganese carbonate mineralization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.