Abstract

Anecdotal observations of the Dougherty plain cave crayfish (Cambarus cryptodytes), the Georgia blind cave salamander (Haideotriton wallacei), and albinistic isopods (Caecidotea sp.) at great depths below the land surface and distant from river corridors suggest that obligate aquifer-dwelling (troglobitic) organisms are widely distributed throughout the limestone Upper Floridan aquifer (UFA). One mechanism by which subterranean life can proliferate in an environment void of plant productivity is through a microbial food web that includes chemosynthesis. We examined this possibility in the UFA by measuring the isotopic composition ((13)C, (14)C, and (15)N) of tissues from troglobitic macrofauna. Organisms that were captured by cave divers entering into spring conduits had delta(13)C values that suggested plant matter as a primary food resource (cave crayfish, -24.6 +/- 2.7 per thousand, n = 9). In contrast, delta(13)C values were significantly depleted in organisms retrieved from wells drilled into areas of the UFA remote from spring and sinkhole conduits (cave crayfish -34.7 +/- 9.8 per thousand, n = 10). Depleted (13)C values in crayfish were correlated with radiocarbon (Delta(14)C) depletion relative to modern values. The results suggest that methane-based microbial chemosynthetic pathways support organisms living in the remote interior of the aquifer, at least in part.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call