Abstract
Yields of equatorially emitted light isotopes, $1\le Z\le 14$, observed in ternary fission in the reaction $^{241}$Pu($n_{\rm th}$,f) are employed to determine apparent chemical equilibrium constants for low-temperature and low-density nuclear matter. The degree of liberation and role of medium modifications are probed through a comparison of experimentally derived reaction quotients with equilibrium constants calculated using a relativistic mean-field model employing a universal medium modification correction for the attractive $\sigma$ meson coupling. The results of these comparisons indicate that equilibrium is achieved for the lighter ternary fission isotopes. For the heavier isotopes experimental reaction quotients are well below calculated equilibrium constants. This is attributed to a dynamical limitation reflecting insufficient time for full equilibrium to develop. The role of medium effects leading to yield reductions is discussed as is the apparent enhancement of yields for $^8$He and other very neutron rich exotic nuclei.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.