Abstract

In the present work, the fusion of symmetric and asymmetric projectile–target combinations are deeply analyzed within the framework of energy dependent Woods–Saxon potential model (EDWSP model) in conjunction with one dimensional Wong formula and the coupled channel code CCFULL. The neutron transfer channels and the inelastic surface excitations of collision partners are dominating mode of couplings and the coupling of relative motion of colliding nuclei to such relevant internal degrees of freedom produces a significant fusion enhancement at sub-barrier energies. It is quite interesting that the effects of dominant intrinsic degrees of freedom such as multi-phonon vibrational states, neutron transfer channels and proton transfer channels can be simulated by introducing the energy dependence in the nucleus–nucleus potential (EDWSP model). In the EDWSP model calculations, a wide range of diffuseness parameter ranging from a = 0.85 fm to a = 0.97 fm , which is much larger than a value ( a = 0.65 fm ) extracted from the elastic scattering data, is needed to reproduce sub-barrier fusion data. However, such diffuseness anomaly, which might be an artifact of some dynamical effects, has been resolved by trajectory fluctuation dissipation (TFD) model wherein the resulting nucleus–nucleus potential possesses normal diffuseness parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call